

UNIDAD 14: Aplicaciones de las derivadas

ACTIVIDADES-PÁG. 328

1. La función y = f(x) es creciente en $(-\infty, 1) \cup (3, +\infty)$ y decreciente en (1, 3). Tiene un máximo relativo en el punto (1, 4) y un mínimo relativo en (0, 3).

La función y = g(x) es creciente en $(-\infty, 0) \cup (1, +\infty)$ y decreciente en (0, 1). Tiene un mínimo relativo en el punto (0, 3).

2. Dos números cualesquiera que sumen 16 son x y 16 - x.

Su producto, $P(x) = (16 - x) \cdot x = 16x - x^2$, es una función cuadrática cuya gráfica es una parábola con un máximo relativo en su vértice (8, 64).

Es decir, los números pedidos son 8 y 8.

Dos números cualesquiera cuyo producto es 16 son x y $\frac{16}{x}$.

Su suma, $S(x) = x + \frac{16}{x}$, es una función cuya gráfica tiene un mínimo relativo en el punto (4, 8).

Por tanto, los números pedidos son 4 y 4.

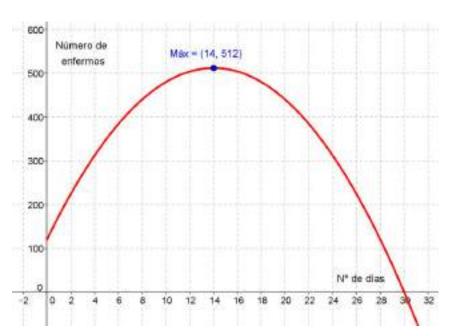
3. a) La función $f(x) = \frac{3}{x}$ es siempre decreciente y no tiene extremos relativos.

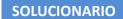
b) La función g (x) = $12x - 3x^2$ es creciente en $(-\infty, 2)$ y decreciente en $(2, +\infty)$. Tiene un máximo relativo en el punto (2, 12).

4. El número de enfermos aumento entre el día que comenzó la epidemia y el día 14.

El número máximo de enfermos se alcanzó el día 14 y fue de 512.

Lo anterior puede verse en la gráfica.





1. Organizamos los datos en una tabla:

	Recibe	Marca
Lunes	X	M
Martes	X – M	12
Miércoles	X + 14	2 M
Jueves	4M	10
Viernes	4	X + 14 - 14
Sábado		20

Los discos que recibe menos los que marca son los 20 discos que le quedaron para el sábado:

$$X + X - M + X + 14 + 4 M + 4 - (M + 12 + 2M + 10 + X) = 20$$
 \Rightarrow

$$\Rightarrow$$
 3X + 3M + 18 - 3M - X - 22 = 20 \Rightarrow 2X = 24 \Rightarrow X = 12

El lunes recibió 12 discos.

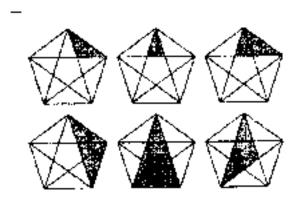
2. Sea v la velocidad del camión y w la velocidad del tractor.

La expresión queda: v + w = 2 (v - w), es decir, v = 3w.

La velocidad del camión es el triple que la velocidad del tractor.

- 3. Llamamos R₄ al reloj que mide 4 minutos y R₉ al que mide 9 minutos.
- *Para medir 1 minuto*: ponemos ambos relojes a cero. Cuando pasan 4 minutos, damos la vuelta a R₄ y al pasar otros 4 minutos, lo que queda de R₉ es 1 minuto.
- Para medir 2 minutos: conseguimos 1 minuto por el procedimiento anterior. A la vez que logramos 1 minuto, el reloj R₄ lo ponemos y quedan en él 3 minutos. En este momento ponemos a funcionar R₉y al terminar, quedan en éste 6 minutos; ponemos a funcionar R₄ y al terminar éste último, quedan en el anterior 2 minutos.
- Para medir 3 minutos: está explicado en el procedimiento anterior.
- Para medir 4 minutos: con el reloj R₄.
- Para medir 5 minutos: ponemos R₄ y R₉; al terminar R₄, quedan en R₉ 5 minutos.
- Para medir 6 minutos: esta situación se explica en el procedimiento para medir 2 minutos.
- *Para medir 7 minutos*: conseguimos 2 minutos por el procedimiento dado anteriormente. Los 2 minutos los tenemos en R₉. Ponemos a funcionar R₄ y al pasar 2 minutos en R₉ quedan otros 2 minutos en R₄. Ponemos a funcionar R₉ y, al pasar los dos minutos en R₄ quedarán 7 minutos en R₉.
- Para medir 8 minutos: ponemos dos veces R₄.
- Para medir 9 minutos: ponemos a funcionar R₉.

- Para medir 2 minutos: conseguimos que queden 6 minutos en R₉ por los procedimientos descritos ya vistos anteriormente y, cuando pasan esos 6 minutos, ponemos a funcionar R₄ obteniendo así los 10 minutos.
- 4. En esta figura podemos encontrar los siguientes tipos de triángulos:

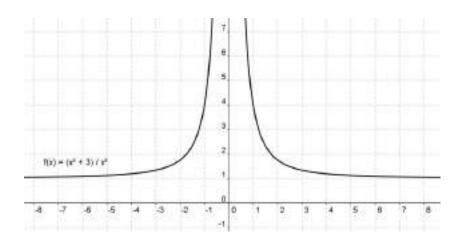


En cada figura podemos encontrar 5 triángulos iguales al rayado en la misma; por tanto, en total hay $5 \times 6 = 30$ triángulos.

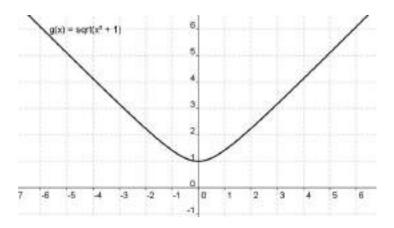
ACTIVIDADES-PÁG. 345

1. Procedemos como se indica en el apartado representación gráfica de funciones y obtenemos las gráficas que pueden verse a continuación:

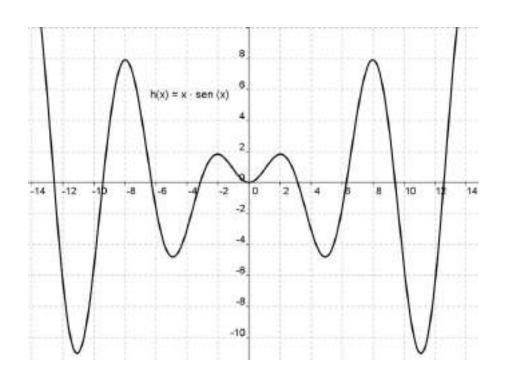
a)
$$f(x) = \frac{x^2 + 3}{x^2}$$



b)
$$g(x) = \sqrt{x^2 + 1}$$

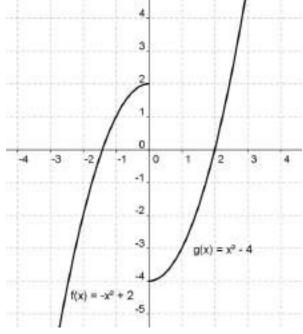


c) $h(x) = x \cdot sen(x)$

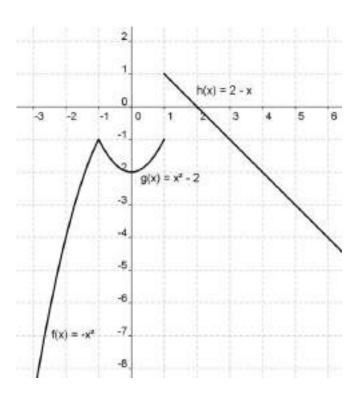


2. Procedemos como se indica en el apartado representación gráfica de funciones y obtenemos las gráficas que pueden verse a continuación:

a)
$$f(x) = \begin{cases} -x^2 + 2 & \text{si } x \le 0 \\ x^2 - 4 & \text{si } x > 0 \end{cases}$$

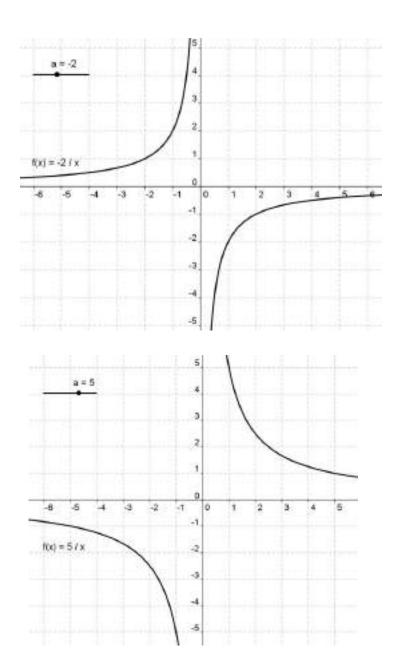


b)
$$g(x) = \begin{cases} -x^2 & si \ x < -1 \\ x^2 - 2 & si - 1 \le x < 1 \\ 2 - x & si \ x \ge 1 \end{cases}$$



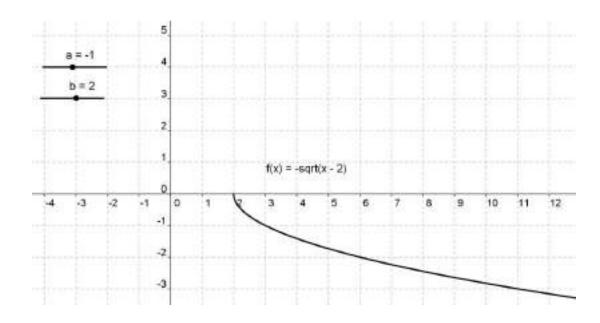
3. a) f (x) =
$$\frac{a}{x}$$

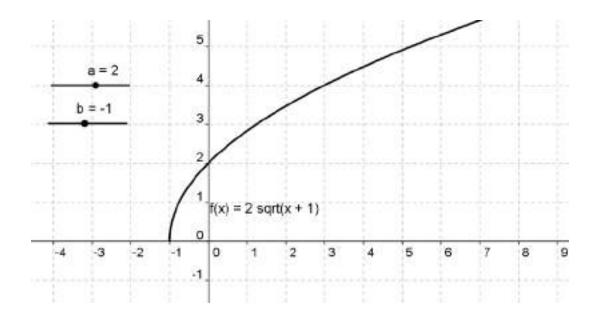
- 1) Con la herramienta **Deslizador** y haciendo clic sobre la Zona o Vista Gráfica colocamos un deslizador, y lo llamamos a. En el *Menú Contextual* del deslizador elige **Intervalo** entre 15 y 15, **Incremento** 1.
- 2) En el Campo de Entrada introduce una función genérica $f(x) = \frac{a}{x}$, tecleando f(x) = a/x. Varía los valores del deslizador y observa las variaciones de la gráfica.



b)
$$f(x) = a \sqrt{x - b}$$

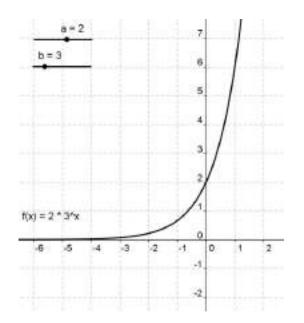
- 1) Con la herramienta **Deslizador** y haciendo clic sobre la Zona o Vista Gráfica colocamos dos deslizadores, uno detrás de otro, y los llamamos a y b elige **Intervalo** entre 15 y 15, **Incremento** 1.
- 2) En el Campo de Entrada introduce una función genérica $f(x) = a \cdot \sqrt{x b}$ tecleando la expresión f(x) = a * sqrt (x-b).

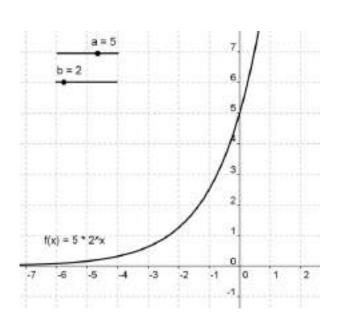




c)
$$f(x) = a \cdot b^x$$

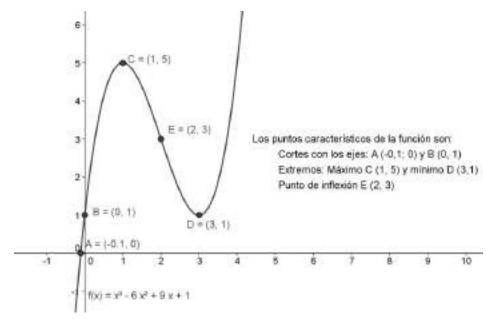
- 1) Con la herramienta **Deslizador** y haciendo clic sobre la Zona o Vista Gráfica colocamos dos deslizadores, uno detrás de otro, y los llamamos a y b escoge **Intervalo** entre 15 y 15, **Incremento** 1 y en el del segundo escoge **Intervalo** entre 0 y 15, **Incremento** 1.
- 2) En el Campo de Entrada introduce una función genérica $f(x) = a \cdot b^x$ tecleando $f(x) = a * b^{Ax}$. Varía los valores de los deslizadores y observa las variaciones de la gráfica.





4. Representamos las funciones y con la herramienta Intersección de dos objetos o con los comandos correspondientes encontramos los puntos de corte con los ejes coordenados, los extremos relativos y los puntos de inflexión de las funciones:

a)
$$f(x) = x^3 - 6x^2 + 9x + 1$$



b)
$$f(x) = x^4 - 8x^2 + 2$$

Los puntos de corte con los ejes coordenados son:

OX: A (-2,78; 0); B (-0,51; 0); C (0,51; 0) y D (2,78; 0).

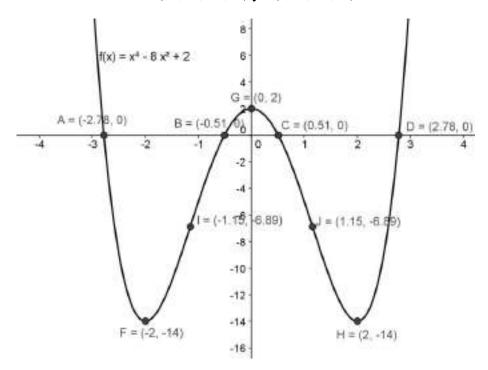
OY: G(0, 2)

Los puntos extremos son:

Máximo: G (0, 2)

Mínimos: F (-2, -14) y H (2, -14)

Los puntos de inflexión son: I (-1,15; -6,89) y J (1,15; -6,89)



c)
$$f(x) = 2 - 3x^2 - x^3$$

Los puntos de corte con los ejes coordenados son:

OX: A (-2,73; 0); G(-1; 0) y C (0,73; 0).

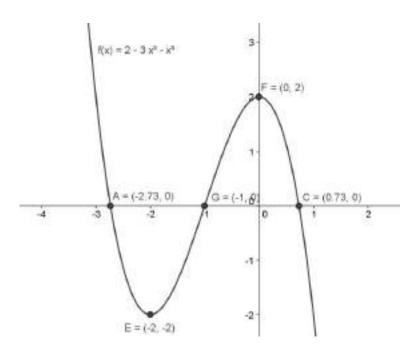
OY: F(0, 2)

Los puntos extremos son:

Máximo: F (0, 2)

Mínimos: E (-2, 2)

El punto de inflexión es: G (-1,0)



1. Las respuestas son:

- a) La derivada es positiva en $\left(-\infty,-2\right)\cup\left(0,+\infty\right)$.
- b) La derivada nunca es negativa.
- c) La derivada es positiva en $(-1, +\infty)$.
- d) La derivada es negativa en $(-\infty, 0)$.

2. Al estudiar la monotonía de las funciones, obtenemos:

- a) La función es creciente en $\left(-\infty,-2\right)$ y decreciente en $\left(-2,+\infty\right)$.
- b) La función es creciente en $\left(-\infty,1\right)\cup\left(3,+\infty\right)$ y decreciente en (1,3).
- c) La función es decreciente en $R \{0\}$.
- d) La función es creciente en (- 1, 1) y decreciente en $\left(-\infty,-1\right)\cup\left(1,+\infty\right)$.
- e) La función es decreciente en todo R.
- f) La función es creciente en su dominio $(-3, +\infty)$.

3. La concentración aumenta para $t \in (0; 12,5)$, es decir, entre el año 2000 y la mitad del año 2013. A partir de entonces la contaminación disminuye.

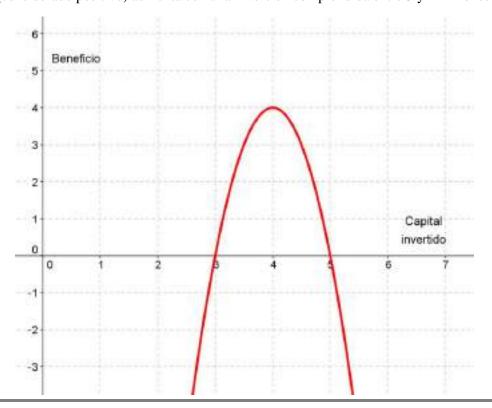
Puede verse en la gráfica.



4. En la gráfica puede verse que el beneficio es nulo para una inversión de 3 ó 5 millones de euros.

La empresa tiene pérdidas siempre que invierta menos de 3 millones a más de 5 millones.

El beneficio (considerado positivo) aumenta con una inversión comprendida entre 3 y 4 millones de euros.



5. El número de visitantes disminuye ente las 14 y las 18 horas.

El número de visitantes aumenta entre la 10 y las 14 horas, así como entre las 18 y las 22 horas.

Todo ello puede verse en la gráfica.

6. Los extremos de las funciones son:

- a) No tiene máximo ni mínimos, es siempre decreciente.
- b) Tiene un máximo en el punto (-2, 32).
- c) Tiene un máximo en (-1, 11) y un mínimo en (3, -53).
- d) Tiene un máximo en (0, 3) y mínimos en (-1, -2) y (1, -2).
- e) Tiene máximo en (0, 2).
- f) Tiene un máximo en (0, 0) y un mínimo en (4, 8).
- g) Tiene un mínimo en (0, ln 4).
- h) No tiene máximo ni mínimos, es siempre creciente
- i) Tiene un máximo en $\left(\frac{5\pi}{3}, 6,97\right)$ y un mínimo en $\left(\frac{\pi}{3}, -0,68\right)$.
- 7. Se debe verificar que f (3) = 0. El valor de K es -4.
- **8.** Se debe verificar que f'(2) = 0 y que f(2) = 7. Los valores pedidos son a = 4 y b = 3.

- 9. Los números son 2 y 4.
- 10. La solución queda:
- a) Función beneficio: B (t) = I(t) G(t), es decir:

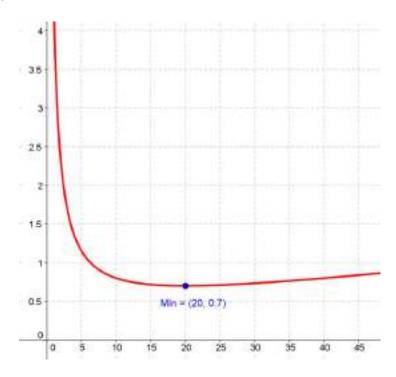
B (t) =
$$(42 t - 3t^2) - (2t^2 - 8t + 105)$$
 \Rightarrow B (t) = $-5t^2 + 50t - 105$

b) La derivada es B ' (t) = -10t + 50, que se anula para t = 5.

La derivada segunda es B '' (t) = -10 y como B '' (5) = -10 < 0, el beneficio es máximo, 20 000 euros, después de transcurridos 5 años.

- 11. Las dimensiones de la finca son 30 metros por 30 metros y su superficie será de 900 metros cuadrados.
- 12. El valor que hace mínimo el coste de contratación es x = 20 trabajadores eventuales. El coste asciende a 700 euros.

Puede verse en la gráfica.



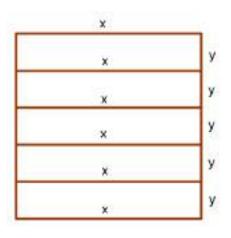
13. Observando el dibujo adjunto tenemos:

$$6x + 10 y = 3660 \implies y = 366 - \frac{3}{5}x$$

El área será
$$A(x) = x \cdot \left(366 - \frac{3}{5}x\right)$$
.

Esta función alcanza un mínimo para x = 305 m.

Las dimensiones de las pistas serán 305 metros por 183 metros.



- **14.** Las dimensiones serán $\frac{40}{3}$ cm y $\frac{20}{3}$ cm.
- 15. Llamamos r al radio de la base y h a la altura del cilindro. Según el enunciado, ocurre que:

$$h^2 + (2r)^2 = 160^2 \implies r^2 = \frac{25600 - h^2}{4}$$
.

El volumen, V, del cilindro es:

$$V(r, h) = \pi r^2 \cdot h \implies V(h) = \pi h \cdot \frac{25600 - h^2}{4} = \frac{\pi}{4} \cdot (25600 h - h^3)$$

La derivada $V'(h) = \frac{\pi}{4} \cdot (25600 h - 3h^2)$ se anula para $h = \pm 92,38$ cm..

Tenemos que V (92,38) < 0, por tanto, el volumen es máximo para h = 92,38 cm y r = 65,32 cm.

16. Llamaos x e y a las dimensiones del cartel. La función a minimizar es A $(x, y) = x \cdot y$.

La relación entre las variables x e y es:

$$(x-8) \cdot (y-5) = 100$$
 $\Rightarrow y = \frac{5x+60}{x-8}$

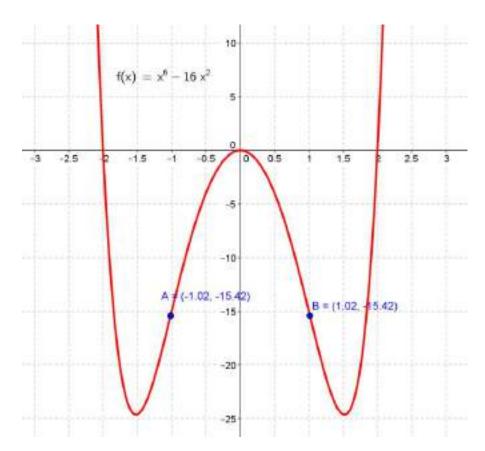
Sustituyendo en la función anterior, obtenemos: $A(x) = \frac{5x^2 + 60x}{x - 8}$.

La primera derivada, $A'(x) = \frac{5x^2 - 80x - 480}{(x - 8)^2}$, se anula para x = 20,65.

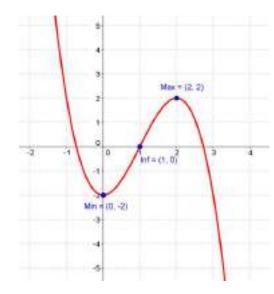
Por tanto las dimensiones del cartel serán x = 20,65 cm e y = 12,91 cm.

17. Las soluciones son:

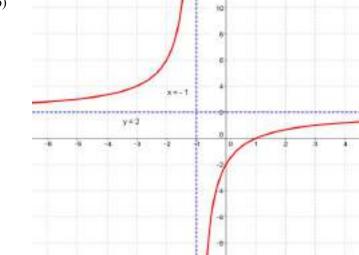
- a) Cóncava hacia las y positivas en $\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$ y hacia las y negativas en $\left(-\infty, -\frac{\sqrt{3}}{3}\right) \cup \left(\frac{\sqrt{3}}{3}, +\infty\right)$; puntos de inflexión en $\left(-\frac{\sqrt{3}}{3}, \frac{32}{9}\right)$ y en $\left(\frac{\sqrt{3}}{3}, \frac{32}{9}\right)$.
- b) Cóncava hacia las y positivas en $(-\infty, 2)$ y hacia las y negativas en $(2, +\infty)$; punto de inflexión en (2, 0).
- c) Cóncava hacia las y positivas en $(4, +\infty)$ y hacia las y negativas en $(-\infty, 4)$; punto de inflexión en (4, 16).
- d) Cóncava hacia las y positivas en $(-\infty, 1)$ y hacia las y negativas en $(1, +\infty)$; no tiene puntos de inflexión.
- e) Cóncava hacia las y positivas en (-2, 2) y hacia las y negativas en $(-\infty, -2) \cup (2. + \infty)$; puntos de inflexión en $(-2, \ln 16)$ y en $(2, \ln 16)$.
- f) Cóncava hacia las y positivas en $(-\infty; -1.02) \cup (1.02; +\infty)$ y hacia las y negativas en (-1.02; 1.02); puntos de inflexión en (-1.02; -15.42) y en (1.02; -15.42). Esto lo observamos en la imagen siguiente:

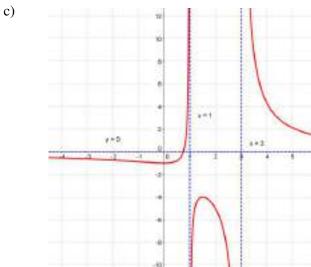


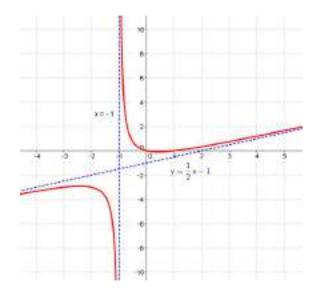
18. Las representaciones gráficas son:



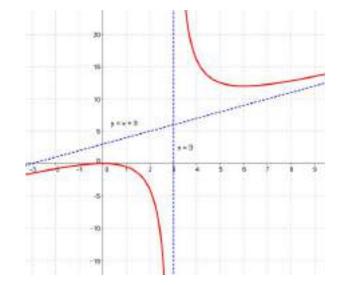
b)



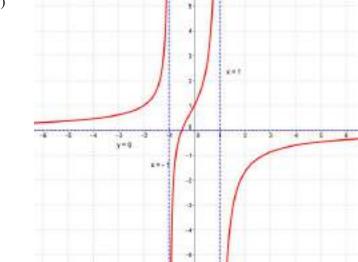




e)



f)



19. Sea $f(x) = x^3 + ax^2 + bx + c$. Se debe verificar:

f'(-1) = 0; f'(-3) = 0; f(-1) = 0. De estas igualdades obtenemos el sistema siguiente y su solución:

$$\begin{cases} a-b+c=1\\ 3-2a+b=0 \Rightarrow \begin{cases} a=6\\ b=9\\ c=4 \end{cases}$$

De modo que la función es $y = x^3 + 6x^2 + 9x + 4$.

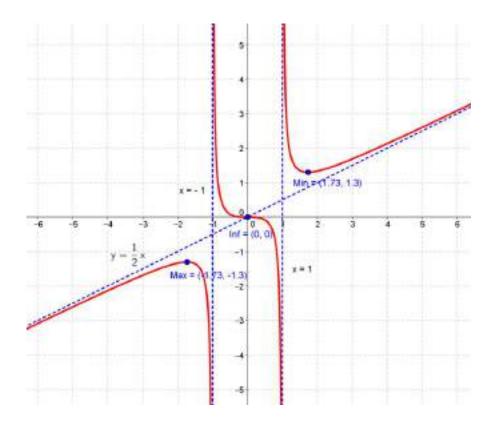
20. Las asíntotas de la función son las rectas x = -1, x = 1 e $y = \frac{1}{2}x$.

La función es creciente en $\left(-\infty, -\sqrt{3}\right) \cup \left(\sqrt{3}, +\infty\right)$ y decreciente en $\left(-\sqrt{3}, \sqrt{3}\right)$.

Tiene un máximo relativo en el punto $\left(-\sqrt{3}, -\frac{3\sqrt{3}}{4}\right)$ y un mínimo relativo en el punto $\left(\sqrt{3}, \frac{3\sqrt{3}}{4}\right)$.

Es cóncava hacia las y positivas en $(-1,0) \cup (1,+\infty)$ y cóncava hacia las y negativas en $(-\infty,-1) \cup (0,1)$. Tiene un punto de inflexión en (0,0).

Todo lo anterior puede verse en la gráfica.



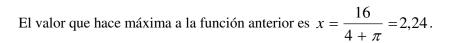
21. Llamamos x e y a las dimensiones del rectángulo y $\frac{x}{2}$ al radio de la semicircunferencia como puede verse en la imagen.

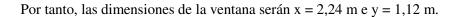
El perímetro de la ventana mide:

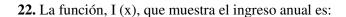
$$x + 2y + \frac{\pi x}{2} = 8 \quad \Rightarrow \quad y = \frac{16 - 2x - \pi x}{4}$$

La superficie de la ventana, en función de la variable x, es:

$$A(x) = \frac{-4x^2 - \pi x^2 + 32x}{8} \implies A(x) = -\frac{(4+\pi)x^2}{8} + 4x$$







$$I(x) = (60\ 000 - 6x) \cdot x$$
; es decir, $I(x) = 60\ 000x - 6x^2$.

Esta función alcanza su máximo para x = 5000. Por tanto debe vender la pieza a 5000 euros para obtener un ingreso anual máximo.

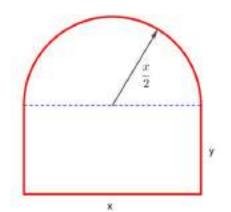
23. Sea la función $f(x) = ax^3 + bx^2 + cx + d$.

Imponiendo las condiciones del enunciado, obtenemos el sistema:

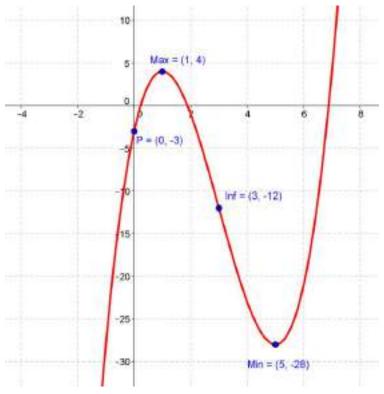
$$\begin{cases} d = -3 \\ a + b + c + d = 4 \\ 3a + 2b + c = 0 \\ 18a + 2b = 0 \end{cases}$$

La solución del sistema es: a = 1, b = -9, c = 15 y d = -3. Por tanto la función buscada es:

$$f(x) = x^3 - 9x^2 + 15x - 3.$$

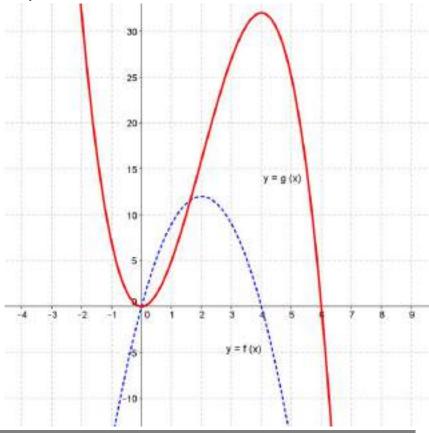


En la imagen podemos ver la representación gráfica de la función cumpliendo todas las propiedades del enunciado.



24. En el dibujo podemos ver la gráfica de la función y = g(x), en trazo continua y en color rojo) y la gráfica de su función derivada, en trazo discontinuo y en color azul.

Hay que tener en cuenta que los puntos de máximo o mínimo de y = f(x) su función derivada tiene cortes en el eje OX y en los intervalos de crecimiento de y = f(x) la función derivada es positiva y en los intervalos de decrecimiento de y = f(x) la función derivada es negativa.



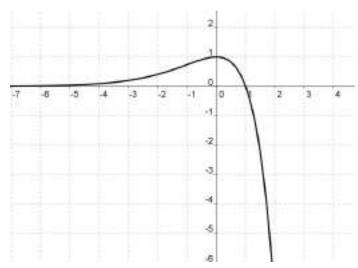
25. Sea $f(x) = x^4 + mx^2 + p$. Se debe verificar:

f ''(2) = 0; f(2) = -75. De estas igualdades obtenemos el sistema siguiente y su solución:

$$\begin{cases} 48 + 2m = 0 \\ 16 + 4m + p = -75 \end{cases} \Rightarrow \begin{cases} m = -24 \\ p = 5 \end{cases}$$

La función es $y = x^4 - 24x^2 + 5$.

26. a) La gráfica de la función y = f(-x) es la simétrica de la función dada y = f(x) respecto al eje OY. Su gráfica será la del dibujo. Sus cortes son (1, 0) y (0, 1) y su asíntota la recta y = 0



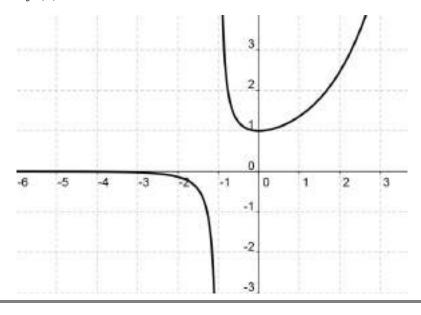
b) Como f (x) crece hasta x = 0, la función y = 1/f(x) decrece de $(-\infty, -1) \cup (-1, 0)$.

Como f(x) decrece a partir de x = 0, la función y = 1/f(x) crece de $(0, +\infty)$.

Como f(x) tiene un corte en (-1, 0), la función y = 1/f(x) tiene una asíntota vertical en x = -1.

Como $\lim_{x \to +\infty} f(x) = 0$ entonces $\lim_{x \to +\infty} \frac{1}{f(x)} = +\infty$ y además como $\lim_{x \to -\infty} f(x) = -\infty$ entonces

$$\lim_{x \to -\infty} \frac{1}{f(x)} = 0$$
. Su gráfica será como la del dibujo.



a) Sea y = mx + n la ecuación de la tangente a la elipse. La ecuación resultante del sistema $\begin{cases} \frac{x^2}{16} + \frac{y^2}{9} = 1\\ y = mn + n \end{cases}$

es decir,
$$\frac{x^2}{16} + \frac{(mx+n)^2}{9} = 1$$
 debe tener una raíz doble.

Operamos en la ecuación y la escribimos en la forma:

$$9x^2 + 16m^2x^2 + 32mn + 16n^2 - 144 = 0$$
 \Rightarrow $(9 + 16m^2)x^2 + 32mnx + 16n^2 - 144 = 0.$

Como esta ecuación tiene una raíz doble su discriminante debe ser cero:

$$(32\text{mn})^2 - 4 \cdot (9 + 16\text{m}^2) (16\text{n}^2 - 144) = 0$$

Operando y simplificando la ecuación anterior, obtenemos: $16m^2 - n^2 + 9 = 0$.

Supongamos que P tiene de coordenadas (x_0, y_0) . Como la recta tangente pasa por P se cumplirá $n = y_0 - mx_0$ y entonces:

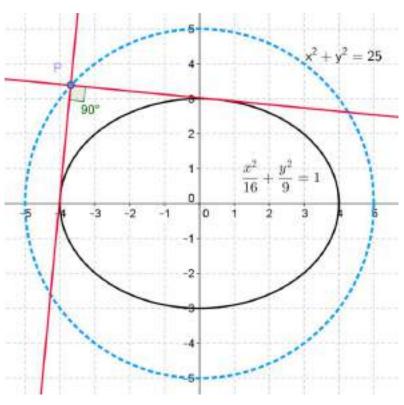
$$16m^2 - (y_0 - mx_0)^2 + 9 = 0.$$

Operando y simplificando, obtenemos: $(16 - x_0^2)m^2 + 2x_0y_0m + 9 - y_0^2 = 0$.

Como las tangentes a la elipse desde P son perpendiculares, las dos soluciones, m_1 y m_2 , de esta última ecuación cumplen $m_1 \cdot m_2 = -1$ y teniendo en cuenta las relaciones de Cardano obtenemos:

$$\frac{9 - y_0^2}{16 - x_0^2} = -1 \quad \Rightarrow \quad 9 - y_0^2 = -16 + y_0^2 \quad \Rightarrow \quad x_0^2 + y_0^2 = 25$$

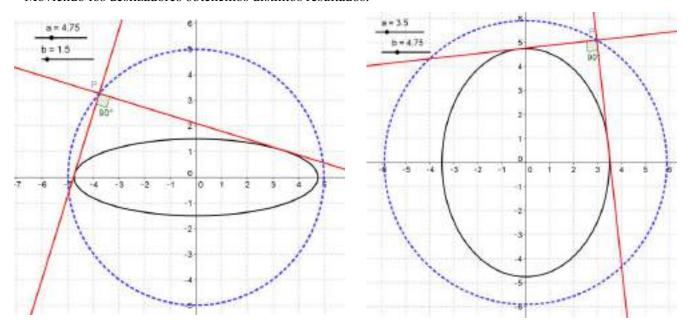
El lugar geométrico es una circunferencia de centro el origen de coordenadas y radio 5.



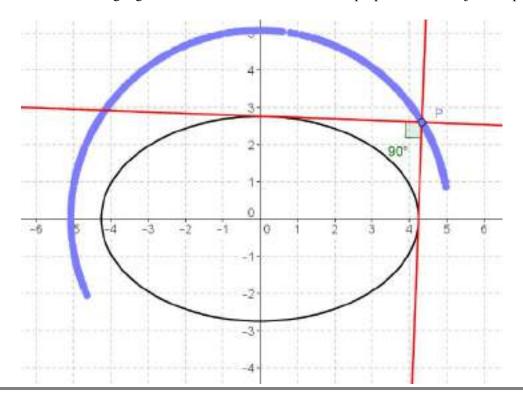
Para las elipses de ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, el lugar geométrico que se obtiene son las circunferencias centradas en el origen y de radio $\sqrt{a^2 + b^2}$, es decir, las circunferencias de ecuación $x^2 + y^2 = a^2 + b^2$.

En los dibujos pueden verse algunas de las anteriores. Para dibujarlas con GeoGebra se crean dos deslizadores para los semiejes de la elipse a y b y posteriormente se introducen las ecuaciones tanto de las elipses como de las circunferencias.

Moviendo los deslizadores obtenemos distintos resultados:



También podemos obtener el lugar geométrico activando el rastro en las propiedades del objeto del punto P.



b) Procedemos como en el caso anterior y obtenemos:

b) Procedemos como en el caso anterior y obtenemos.

Sea y = mx + n la ecuación de la tangente a la hipérbola. La ecuación resultante del sistema $\begin{cases} \frac{x^2}{16} - \frac{y^2}{9} = 1, \\ y = mn + n \end{cases}$

es decir, $\frac{x^2}{16} - \frac{(mx + n)^2}{9} = 1$ debe tener una raíz doble.

Operamos en la ecuación y la escribimos en la forma:

$$9x^2 - 16m^2x^2 - 32mn - 16n^2 - 144 = 0$$
 \Rightarrow $(9 - 16m^2)x^2 - 32mnx - 16n^2 - 144 = 0.$

Como esta ecuación tiene una raíz doble su discriminante debe ser cero:

$$(32\text{mn})^2 + 4 \cdot (9 - 16\text{m}^2) (16\text{n}^2 + 144) = 0$$

Operando y simplificando la ecuación anterior, obtenemos: $16m^2 - n^2 - 9 = 0$.

Supongamos que P tiene de coordenadas (x_0, y_0) . Como la recta tangente pasa por P se cumplirá $n = y_0 - mx_0$ y entonces:

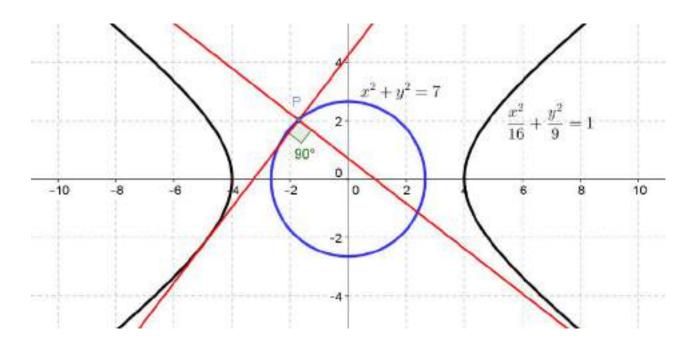
$$16m^2 - (y_0 - mx_0)^2 - 9 = 0.$$

Operando y simplificando, obtenemos: $(16 - x_0^2)m^2 + 2x_0y_0m - (9 + y_0^2) = 0$.

Como las tangentes a la hipérbola desde P son perpendiculares, las dos soluciones, m₁ y m₂, de esta última ecuación cumplen $m_1 \cdot m_2 = -1$ y teniendo en cuenta las relaciones de Cardano obtenemos:

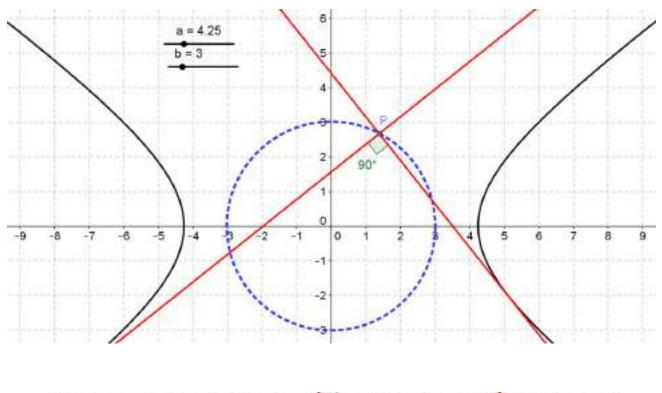
$$\frac{-(9+y_0^2)}{16-x_0^2} = -1 \quad \Rightarrow \quad 9+y_0^2 = 16-y_0^2 \quad \Rightarrow \quad x_0^2+y_0^2 = 7$$

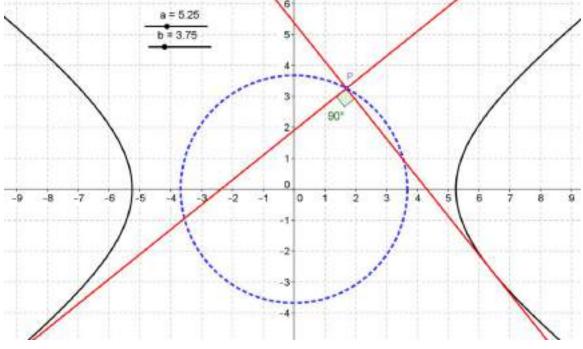
El lugar geométrico es una circunferencia de centro el origen de coordenadas y radio $\sqrt{7}$.



Para las hipérbolas de ecuación $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, con a > b, el lugar geométrico que se obtiene son las circunferencias centradas en el origen y de radio $\sqrt{a^2 - b^2}$, es decir, las circunferencias de ecuación $x^2 + y^2 = a^2 - b^2$.

En los dibujos pueden verse algunas de las anteriores. Para dibujarlas con GeoGebra se crean dos deslizadores para los semiejes de la elipse a y b y posteriormente se introducen las ecuaciones tanto de las hipérbolas como de las circunferencias.





c) Para la parábola $y = ax^2$ procedemos como en los casos anteriores y obtenemos:

Sea y = mx + n la ecuación de la tangente a la parábola. La ecuación resultante del sistema $\begin{cases} y = ax^2 \\ y = mn + n \end{cases}$, es decir, $x^2 = mx + n$ debe tener una raíz doble.

Operamos en la ecuación y la escribimos en la forma:

$$x^2 - mx - n = 0$$
.

Como esta ecuación tiene una raíz doble su discriminante debe ser cero:

$$m^2 + 4n = 0$$

Supongamos que P tiene de coordenadas (x_0, y_0) . Como la recta tangente pasa por P se cumplirá $n = y_0 - mx_0$ y entonces:

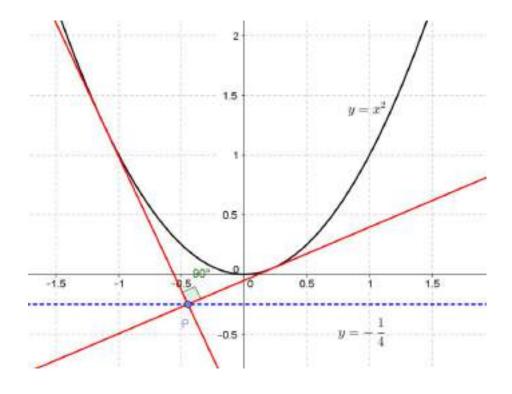
$$m^2 - 4(y_0 - mx_0) = 0.$$

Operando y simplificando, obtenemos: $m^2 - 4mx_0 \ 4y_0 = 0$.

Como las tangentes a la hipérbola desde P son perpendiculares, las dos soluciones, m₁ y m₂, de esta última ecuación cumplen $m_1 \cdot m_2 = -1$ y teniendo en cuenta las relaciones de Cardano obtenemos:

$$\frac{4y_0}{1} = -1 \quad \Rightarrow \quad 4y_0 = -1 \quad \Rightarrow \quad y_0 = -\frac{1}{4}.$$

El lugar geométrico es una recta horizontal, que coincide con la directriz de la parábola.



Para las parábolas de ecuación $y = ax^2$ el lugar geométrico que se obtiene son las rectas horizontales de ecuación $y = -\frac{1}{4a}$, que coinciden con la directriz de la parábola.

